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ABSTRACT

A new non-graphical method for representing the topology of phase diagrams is
presented. The method exploits the fact that the topological relations between the
variously dimensioned equilibria making up the structure of a phase diagram may be
treated as a special type of algebraic structure, called an incidence lattice. Correspond-
ing to each topologically distinct phase diagram there is a finite incidence lattice whose
elements correspond to the invariant (vertices), monovariant (edges), bivariant (sur-
faces), etc., transition equilibria of the diagram, and whose operations correspond to
moving between these topological elements in a systematic way. Further, we have
discovered a method of modeling a given incidence lattice by a family of sets. In this
incidence calculus, as we call such a family of sets, the two operations for the incidence
lattice are modeled by set intersections. This defines a "calculus” of phase diagram
equilibria specific to that diagram and provides an efficient method for a computer to
store and subsequently retrieve the topological relationships between an equilibrium
and the rest of the diagram or between any two equilibria. A remarkable mathematical
fact is that the incidence calculus may be generated from certain subsets of itself. This
is reflective of the fact that knowing a "sufficient” portion of the topology uniquely
determines the remainder. An algorithm exploiting this fact, based on knowing just
which n-dimensional phase fields of an n-ary phase diagram are incident on each vertex
(point with zero degrees of freedom), is described. Hence, the higher the dimensionality
of the diagram, the higher the return from the algorithm. The application of the
incidence calculus to a multicomponent data base and its potential for qualitative ther-
modynamic modeling are discussed.
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1. INTRODUCTION

A phase diagram(1,2] is usually communicated as a pictorial object (figures 5,6 and 8) among
buman viewers. Presented with such a diagram, a trained human must interpret what he sees in order
to make the information contained in the figure explicit within bis mind. This process of visual interpre-
tation as performed by a human viewer is not well understood[3] and subsequently not very well emu-
lated by computer. However, the information contained in a phase diagram exists independently of an
implicit graphical rendering and for purposes of computer representation, in support of a computerized
data base, invites explicit representations which do not require this interpretive step.

In this paper we are concerned with the computer representation of the topological structures
inherent in (primarily, temperature-composition) phase diagrams. We advocate the view that these
structures must be explicitly represented in the computer in order to easily answer queries regarding
phase adjacencies, and present one method of doing so. We will not be concerned with thermodynamic
modeling as such, but rather with the represnntation mathematics useful in understanding how to store
the results of such modeling in the computer.

The practical representational problems motivating these ideas are:
(1) Entry Problem: How to enter into the computer higher dimensional phase diagrams.

(2) Subsystem Problem: How to utilize lower order phase diagrams in support of higher order systems
within a computerized data base.

(3) Equilibria Adjacency Problem: How to represent the invariant (point), monovariant (boundary),
bivariant (surface) etc. transition equilibria in & manner which allows questions concerning their
adjacency relationships to be easily answered by computer.

The results we have obtained are due to separating the geometry of s phase diagram into two
types of information: the topological and the metrical[4,5), and the realization that the topological infor-
mation, from a computer representation point of view, is dominant over the metrical, i. e., the metrical
information is viewed as attributes of the topological elements. Thus a vertex, a topological object,
becomes a geometric point when its temperature-composition coordinate is assigned i.e., the assigning of
a metric attribute. In an analogous way edges and faces may be turned into boundaries and surfaces. In
this paper we describe a representation for the topological structures making up a phase diagram and for
the relations existing between a phase diagram and its subsystems.

Without defining precisely how we distinguish between topological and metrical information, we
will use the term fequilibrig, f =0,1,2, - - -, to refer to any equilibrium interface having f degrees of
freedom. While not precisely true of all topological elements making up a phase diagram (e.g., a binary
eutectic tie-line is not a true f-equilibria), we will for the moment use the term vertex for invariant
equilibria (0-degrees of freedom), edge for monovariant equilibria (1-degree of freedom), face for bivari-
ant equilibria (2-degrees of freedom) etc., and refer to them in general as f-equilibria

2. PHASE DIAGRAM REPRESENTATION PROBLEM

Consider the problem of entering and representing within the computer a phase diagram such as
the ternary diagram depicted at the top of figure 1, in such 8 way as to [acilitate the answering by com-
puter, questions of the following type:
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(1) For a given surface, what are its edges?

(2) For a given surface, what volume(s) does it bound?

(3) Given two surfaces, which common volume, if any, is bounded by both?

(4) Given two surfaces, which edges and/or vertices, if any, do they have in common?
(5) Questions (1) - (4) restricted to the binary subsystems.

These questions, asked of a human viewer are easily answered through the process of visual
interpretation, but not as easily answered by computer.

If metrical information for individual f-equilibria, i.e., phase boundary points, are stored in the
computer, then the diagram can be reproduced graphically. However, the information that two I-
equilibria meet at a eutectic in a binary, for example, is not explicitly known (unless a calculation is per-
formed), and exists only in the mind of the human interpreter as he views the graphical rendering.

One solution is to store tables in the computer containing the precomputed answers and subse-
quently look up the explicit relationships between a f-equilibria and the remaining diagram or between
any two f-equtlibria. Such tables are called incidence matrices[5], and for the ternary of figure 1, charac-
terize the topological relationships between the (for this example) 70 distinct volumes, surfaces, edges
and vertices. A disadvantage of this method lies in the amount of work required to generate such tables,
and the space required to store them.

We present here an alternative to the above method in the form of a finite mathematical lattice,
or lattice algebral6), specific to the topology of the transition equilibria of a given n-ary phase diagram.
The lattice contains as many elements as there are topological elements in the phase diagram. Questions
of type (1) - (4) are readily answerable by applying the operations of the lattice to the elements in ques-
tion, mapping them to the element(s) constituting the answer. Furthermore, we have discovered a sim-
ple algorithm for automatically generating the elements of this lattice from information which is readily
obtained by visual inspection of a rough drawing or potentially from thermodynamic modeling.

3. TOPOLOGICAL DECOMPOSITION OF A PHASE DIAGRAM

Below the ternary of figure 1 we have depicted its topological decomposition into a hierarchy of
volumes, surfaces, edges and vertices. (Only a small subset is actually depicted and the L +a+p phase
field is left out entirely to simplify the figure.) The relationships asked for by questions (1) - (5) are
implicitly represented in this decomposition by the lines connecting the various topological elements and
may be easily read off the figure. The trick is to get such a decompaosition figure into the computer in a
simple way.

To be more precise, we introduce some notation denoting the relations between the topological
structures (f-equilibria) in the topological decomposition of a phase diagram.

An edge ¢ is said to be a gubstructure of the surface 8 which it (partially) bounds. This relation-
ship is indicated by ¢ <& and is read "e is a substructure of s”. Conversely, & is a guprastructure of
e, and this is indicated by & >e¢. In figure 1, the lines connect just those elements which have this rela-
tionship. Questions of type (1) and (2) above are then a matter of finding all elements z which, for a
given surface &, satisfy z <s and & <z respectively.

For two distinct surfaces &; and s, and a volume v, in case both 6, <v and s,<v, we say v is
the join of &, and s, and indicate this by 8,18, = v. Hence, questions of type (3) are a matter of
finding, for the given surfaces s, and s,, an z such that 8, <z and s,<z.

Similiarly, for surfaces s, and s, and an edge ¢, in case ¢ <s, and e <s,, we say e is the meet
of &, and s, and indicate this by 8, | 2, = e. Questions of type (4) are then answered by finding an z
such that z <s, and z <s, for the two given surfaces ¢, and s,.

Figure 1 is then a graphical depiction of the f-equilibria decomposed into their topological elements
in which the substructure relation < is indicated by lines extending down from an element to its sub-
structure elements. In addition, the join t and meet | are indicated when two elements have a common
suprastructure or substructure respectively.

The explicit representation of the relationships between the topological elements of a phase
diagram may be encoded as a list data structure(7], but this still requires that it all be generated in
some way. An alternative to such an encoding, we are suggesting, is a lattice -modeling the structural
relationships between the f-equilibria. In this paper we describe such a lattice, in which the join 1 and
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Figure 1. '_I'he topological decomposition of a simple ternary. Only the a + B phase field is decomposed and
the L + a + B is left out entirely to simplify the figure. The actual decomposition contains 70 topological elements.
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meet | are implemented by set operations acting on elements of the lattice. Further, we describe a
method for computing all the elements of the lattice for a n-ary phase diagram from a knowledge of just
the substructure < relationship between the 0-equlibria and the n-equilibric.

In order to diflerentiate between f-equilibria and the topological structures representing them in a
phase diagram, we introduce the term k-face to refer to a topological element of dimension k. Hence 0-
Jaces are vertices, I-faces edges, 2-faces surfaces and 8-faces volumes. We will use i-face, j-face, k-
face, - - - to refer to topological elements of dimension s,5 .k, * - - . By referring to a given topological
element as a k-face, we emphasize its topological dimension k, while referring to it as an f-equilibrium,
we empasize its associated degrees of freedom f . Note that for a fixed f-equtlibrium, referred to also as
a k-face, f <k, and in particuliar, for a binary eutectic tie-line, for example, f=0<1=k.

Using this notation we may summarize the above definitions for the substructure relation and the
join and meet operations between the topological elements representing the f-equslibria of a n-ary phase
diagram, generalized to k-faces and also allowing a k-face to be a substructure of itself, 0<s,5,k <n
by:

1<)
t-face < j-face if and only if {i-face & a substructure of j-face
J-face is a suprastructure of i-face

k> maz(i,5)
k-face> i-face
i-face 1 j-face = k-face if and only if k-face2 j-face

k 15 minimum (element of lowest dimension)

k Smin(i,5)

k-face<i-face
i-face | j-face = k-face if and only if k-face<j-face

k is mazimum (element of highest dimension)

4. AN EXAMPLE LATTICE CALCULUS

In order to simplify the presentation given here, we will exemplify our ideas in terms of a much
simpler "phase diagram”, namely the one shown in figure 2, which we shall refer to as P{A,B,C]. We
write it this way to emphasize that three of the faces of the ternary prism are the binary subsytems
P{A,B], P[B,C] and P[C,A]. There are two volumes (the interior of the figure and the exterior), five
faces, nine edges and six vertices, making a total of 22 k-faces,k =0,1,2,3, which agrees with Eulers well
known identity[8] vertices —edges +faces-volumes =6-9+5-2=0.

We enumerate the lattice elements of the proposed lsttice for representing P[A,B,C} in table I,
under the column labeled "Incidence Set”. Their individual identification with the k-faces of P[A,B,C]
are enumerated in the third column, while the first column name will be used in the text. For the
moment, ignore column four.

Each lattice element consists of a set of labels taken from the set {A-B,B-C,C-A,-B,-L,a}, which
we will refer to as the label set for P{A,B,C]. The label set is generated by assigning a unique label to
each "region” incident on an exterior face of P|A,B,C], so that A-B,B-C,C-A are the binary subsystem
labels, and -B and -L are the bottom and liquidus face labels. (The digits 1,2,3, - + - would serve as well,
but we will use labels which have a mnemonic value.) An additional label is added for each interior
phase field. In the case of P[A,B,C], there is only one, which we have labeled a. The "-", when used in a
label, mnemonically indicates an exterior face label, as opposed to an interior phase field, where conven-
tional phase ficld labels will be used.

Each lattice element, or jncidence set as we shall refer to them, may be thought of in the following
way: For the topological element it corresponds to, it is the set of labels corresponding to the volumes
(n-faces for a n-ary phase diagram), which are incident to (i.e., touch) that element. For example the
"regions” labeled A-B,-B, and a are all incident on the edge e;» and hence the lattice element
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Figure 2. The topological decomposition of the ternary coordinate shell P [A, B, C), or “prism”. The
connectivity of the vertices, edges and faces are modeled by the incidence sets of table 1, and is isomorphic
to the graphically depicted lattice of figure 3.
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corresponding to e, is {A-B,-B,a}. A face (2-face) separates two volumes, and hence the incidence set
corresponding to a face will always contain the two labels of the volumes to either side. (The same is
true of edges in a binary diagram, and in general for the (n-1)-faces of a n-ary diagram.)

INCIDENCE LATTICE FOR PJ|A,B,C]
Name Incidence Set (Name*) Interpretation as k-face Maximal Vertex Set
a {A-B,B-C,C-A,-B,-L,a} exterior of P[A,B,C] (volume) {}
v, {C-A,A-B,-B,a} vertex v, {v,}
v, {A-B,B-C,-B,a} vertex v, {v,}
vy {B-C,C-A,-B,a} vertex vy {v3)
v, {C-A,A-B,-L,a} vertex v, {v,}
v {A-B,B-C,-L,a} vertex vg {vs}
ve {B-C,C-A,-L,a} vertex vg {ve}
), {A-B,-B,a} edge connecting v, and v, {vy,v5}
€3 {C-A,-B,a} edge connecting v, and v, {vy,v3}
ey - {A-B,C-A,a} edge connecting v, and v, {v,,v}
€93 {B-C,-B,a} edge connecting v, and v, {vo,v;}
€os ~{A-B,B-C,a} edge connecting v, and v {v,,vs}
€35 {B-C,C-A,a} edge connecting v; and v,y {vj,ve)
[ {A-B,-L,a} edge connecting v, and vs {v,vs}
€4 - {C-A,-L,a} edge connecting v, and vg {vyve}
€5 {B-C,-L,a} edge connecting vs and vy {vs,ve}
[ 303 {-B,a} face at bottom {v,,vyv3}
L ase {-L,a} face at top {vyvs,ve)
L2 {A-B,a} binary system A-B {vyvgv405}
f 1346 {C'M bi“a‘:y system C-A ("Jy"ar"u”s)
[ 2356 {B-C,a} binary system B-C {vs,v3,u5,v4)
a {a} interior volume {vy, - - ,vg)

TABLE 1

The entire collection of 22 incidence sets constituting the lattice for P[A,B,C] will be denoted by
Tpa B.c) This set Tpi4 g c) implicitly contains all the topological information about P{A,B,C]. Furth-
ermore, there are simple operations on the incidence sets which allow one to determine if the substruc-
ture relation holds and to compute the join and meet operations for a given s-face and j-face, i.e., calcu-
late the answers to questions of type (1)-(4).

We will use the notation "name *” to refer to the incidence set associated with "name”, e.g., f 123
= {-B,a}.
The substructure relation < is calculated by
t-face < j-face if and only if i-face® D j-face’

That is, i-face is a substructure of j-face if and only if j-face’ is a subset of i-face’. Hence to
answer questions of type (1), the determination of the substructures of a given s-face, we find all
incidence sets of Tp4 g ) Which contain the incidence set i-face’ as a subset.

For example, the edges and vertices of face f 43, are found by finding all the sets s (except @,
whose role will become clear in 8 moment) of Tp(4 p c) 8uch that f j5; is a subset of s. These sets are
€12,¢13,623,v1,v2,V3, and are the incidence sets for the k-faces of lower dimensionality contained
within f ;3. The edges contained in this set are easily identifiable, e.g., in this example all edges have
three elements in their corresponding e,. Note that only elements of dimensionality lower than that of
J 123 need be searched. A similar process answers questions of type (2) except we must search for subsets
instead of supersets.
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In general, questions of type (1) and (2) may be rephrased as:
(1) For a given k-face, which j-faces, y <k, does it contain?
(2) For a given k-face, which y-faces, j >k, contain it?
We call (1) and (2) the substructure and suprastructure question, and use the notation

SUB (k-face') = {j-face’ €Tp 4 p,clli-face’ Dk-face’}
SUP (k-face® ) = {j-face’ €Tp 4 'B'c}lj-facc' Ck-face’}

to denote the set of j-faces strictly contained in and containing the given k-face. They are both easily
answered by searching the lattice elements for the sets containing or contained in the incidence set for
the given k-face.

Questions of type (3) and (4) utilize two given elements and hence may be regarded as binary
operators on Tp4 5.c;- Type (3) questions correspond to the join operator and are calculated by

i-face t j-face = k-face if and only if k-face’ = i-face’ N 5-face’

That is, the incidence set of the element corresponding to the join is found by taking the intersec-
tion (the set containing elements common to both ) of the two incidence sets corresponding to the given
i-face and j-face.

For example, to find out which face of lowest dimensionality contains both the edges e, and e,;,
we compute the intersection of e, and e;; and obtain f yy3, the common face. For edges ¢, and e,
their intersection is {a}=a’, the volume containing both, since they do not have a common face. Type
(3) questions may be generalized to:

(3) Given an i-face and a j-face, which k-face, k >maz (3,5 ), of lowest dimensionality, contains them
both?

We denote this question and the resulting value by:
JOIN (s-face’ ,j-face’ ) = i-face’ Ny-face’
The solution to type (4) questions is more complex. It is calculated by:
i-face | j-face = k-face if and only if k-face’ = ({3 E€Tp 4 5 c)s Di-Jace’ and s Dj-face’}
= ({# €Tp s p,cfs ESUB(i-face* ) N SUB (j-face" )}
= JOIN(s,, * * * ,0 ), 8; ESUB (s-face’) N\ SUB (y-face’)

In words, we must find the substructure incidence sets common to both the given i-face® and j-
Jace’, (a set of sets), and then calculate the set of elements common to all these sets. The resulting set
is the incidence set corresponding to the desired k-face. Note that this is equivalent to finding the JOIN
of all the substructures common to s-face and j-face.

For example, to find the element of highest dimensionality common to both f jo,s and f 55, we
first find all supersets containing both f y2s and f 5. Note that this is equivalent to finding the inter-
section of SUB(f ;245) and SUB(S 4s¢)- The result is {a°,e 5 }. We next take the intersection(which is
equivalent to JOIN(G’,e s ), of these sets which yields ¢ g5 , i.e., edge e which is common to both. As
a further example, we calculate the edge common to [ ;5; and f 5. The first step yields {@°}, and
since the intersection of a singleton is that singleton, the second step yields @°. The interpretation of
this result is that there is no k-face (edge or vertex) shared by f ;05 and f 46. The role of the incidence
set @’ is to deny the existence of tentatively hypothesized k-faces.

Type (4) questions may be generalized to:

(4) Given an s-face and a j-face, which k-face, k <min (3,5 ), of highest dimensionality is contained in
both? (If it does not exist, so indicate).

We denote this question and the resulting value by:
MEET (i-face’ j-face*) = JOIN (s,, - - * ,8,, ), 8, ESUB (i-face’ ) N SUB (5-face*)

By combining the two relations SUB and SUP and the binary operators JOIN and MEET to create
expressions, complex questions concerning the topological relationships among the equilibria may be
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easily stated and efficiently answered by the corresponding incidence sets. For example, a (binary)
eutectic is searched for by finding phases a, §, and L and incidence sets L*, (a+L)*, (6+L)° and
(a+B)’, such that their joint meet is a 0-face, i.e., the eutectic.

Questions of type (5) relate to sub-lattices of Tp4,p c|, namely one for each of the binary system
faces: T 4.5 Tpc and T, and are easily found, since the incidence sets for each contain the binary
system tag, e.g., A-B. The set Tp4 p ) may be built from T 4.5 Tpc and T, and knowledge of
additional 3-dimensional k-faces. This will not be developed at this point other than to indicate that the
relationships between the constituant (n-1)-ary subsystems and the resulting n-ary system are naturally
reflected in the lattice corresponding to the n-ary system.

§. WHERE DID THE LATTICE ELEMENTS Tp 4 5,c; COME FROM?

The mathematical relationships existing between the f-equslibria, as we have described them in the
preceding sections, are a special type of mathematical lattice[8], or in the case of a n-dimensional
polytope complex for which n-ary phase diagrams are an example, a polytope face (incidence) lattice[9).

Up to this point we have used the term incidence lattice to refer ambiguously to both the abstract
mathematical relationships existing between the topological elements (i.e., k-faces denoting the f-
equilibria of a phase diagram), and the collection of incidence sets which "implement” it. In [9], refer-
ence is made to the former. To our knowledge, the existence of the incidence sets modeling the incidence
lattice has not been previously known. Therefore, we make the following distinction. For a given phase
diagram P, the collection of incidence sets modeling the abstract jncidence lattice, we shall refer to as
the jncidence calculus , and denote this latter by Tp.

Hence, the abstract mathematical relations denoted by the substructure relation <, join t and
meet | are properly part of the incidence lattice, while the operations of SUB, SUP, JOIN and MEET
are part of the incidence calculus, and operate on incidence sets. The incidence calculus, Tp4 5 c)
because it models a mathematical lattice, has the properties of a lattice, and hence can be depicted in
the form of a directed graph[6], called a Hasse diagram, as in figure 3. Note that its structure is identical
to the substructure relations exhibited by figure 2.

A remarkable mathematical fact is that the incidence lattice is an atomic lattice and as a result,
the v;’s are generators for all the remaining elements of the incidence calculus. We have discovered a
practical algorithm for accomplishing this which we have implemented, and have used it to compute the
calculus associated with 8 number of binary, ternary and quaternary phase diagram topologies.

Assume we have been given a set of vertex incidence sets v;’, § =1,2, - - - ,v. The algorithm may
best be understood by first thinking about a mnaive version which enumerates all combinations of
{vi,v2,.,v,}, from v at a time down to 0 at a time. The intersection of each combination is found,
and for a particular intersection value, that value and the largest set of v,”s giving that value are the
incidence set and maximal yertex get respectively, associated with a unique element of the topological
decomposition. For the prism of figure 2, whose incidence calculus is given in table I, column four lists
the corresponding maximal vertex set. In effect, we are generating the closure under intersection for the
given set of v,”s. The algorithm is based on the foliowing recursive definition in which the set of combi-
nations are defined in terms of lower order combinations.

Let [uy,vq, - *,0, | § ] denote the set of combinations of v vertices taken ¢ at a time, and let * be
the operation of distributive union defined on a singleton {v } and a set of sets S; by:

{U}‘{Slos% ct ’Sk} = {("}Ush {"}Uszv Ty {O}USE}

Then the set of v vertices taken 5 at a time may be recursively computed by the following|[10}:

{”u)*["u”m Ty ' '._l] U {vv-l}‘lvh”?r e ,Uc-zl "’l] u--:
i VR O LI TTCPAEREN N EE5 ) 1<i<v
[U]yvzy 7”9 'I == {{vl},{UQ}' v e ,{vv }} "=l
0 i=0
This is depicted in figure 4 for the ternary prism of figure 2, where the v,”s in all combinations are
listed with {v,,u,, * - - ,ve] 6] at the top, [v,,v,, -+ ,vs| 5] below, down to [vy,vg, - ,ve] 0] at the

bottom. Combinations of vertices resulting in maximal intersection values are marked with asterisks.
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{a}

1

{(-La} {-Ba} {B-Ca) {A-Ba) {C-Aa)

{A-B-B,a}{C-A,-B,a}{A-B,C-A,a}{B-C,-B,o}{A-B,B-C.a}{ B-C,C-A.c}{A-B,-La{C-A,-L,a{(B-C,-L,a}

{C-A,A-B,-B,a} {A-B,B-C,-B,a} {B-C,C-A,-B,a} {C-A,A-B,-L,a} {A-B,B-C,-L,a} {B-C,C-A,-L.a}

{C'AOA 'Bv B- C. 'Bl 'Lt ﬂ)

Figure 8. The 22 incidence sets corresponding to the interior volume (at top of figure), 5 faces, 9 cdges,
8 vertices and exterior volume (bottom), for the ternary prism of figure 2, in which the substructure,
suprastructure, meet and join are modeled by the lines connecting them.



Algebraic Representation of Phase Diagrams -8-

{9,93.950,0594)""

{v)v2.050405) {0)00.950,08) (v)0505v500) (0)090,0508) (v30500504) (vgvg0,0,04)

{o1vg050)  {v)02v39g)  (v)0g0q0q) (905005} (02050506} (9050005}  (vg050504)° {vg0 050}

{r1.09v305) {v)0000)°" (0,00950q)  (9)030094)° (v)0,050q)  (vg050,04)  (vgr,v04)

(000205} {010005) {v)wgugd {0)vavg) {9)0,0g) {vgvyo ) (vgvgug} (vgviog] (vgoevg} (vgoyvq)

(000000 (0,0000) (90005} (000s) (9,950 (9000950 (959095} (v} Avgogrgd  (vgogme)®

{r309)% {93,05)% {020} {2,010 0Hog05)™ (239 Mwg05)™ (990959 Hogo ) o596} {00,95)% {#404)* (v504)"

('])' ("). ('s). (",. (vd' ('.)‘

. vertex
se; edge
#ss;  face

ssss:  yolume

‘)”.’

Figure 4. The Hasse diagram for the 64 combinations of six vertices taken ¢ at a time listed by de-
creasing ¢ from 6 to 0 from top to bottom. The intersections of the 22 elements with asterisks
correspond to the incidence sets for the 6 vertices, 9 edges, 5 faces and interior and exterior volumes for
the ternary prism of figure 2. (Lines, indicating the subset relation, have been drawn for just the left-
most combinations, in order to simplify the figure.)
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v
Finding all maximal vertex sets in this manner will require that E( 7 ) =2" combinations' be
i=0

tested and hence it will be computationally too expensive to compute the incidence sets for a very com-
plex phase diagram. However, the above computation may be modified slightly so as to reduce the aver-
age computational complexity from being exponential in v to polynomial in v. This modification and
subsequent reduction in computation stems from two observations: (a) If the intersection of a combina-
tion is empty, then all combinations which contain that combination as a subset will also be empty and
need not be gencrated, and (b), any subcombination contained in a (known) maximal combination whose
value is the same as the maximal one need not be generated. (a) in fact, is a special case of (b).

The v;”s are initially obtained by applying the following steps to a n-ary phase diagram:
(1) Uniquely label the 0-faces (vertices) and highest dimensional n-faces (volumes for n =3).
(2) For each v, v,’is the set of n-face labels incident on v;.

Step 1 above requires labeling the exterior volume in 8 manner which uniquely characterizes each
face. This is easily performed. As a check to insure that the given v," describe a topologically consistant
figure, the generalized Euler identity, i.e., Schlaefli identity[4,8) may be applied to the resulting i-faces®.
Let #(i-face) denote the number of distinct s-faces of dimension s, in a n-dimensional n-ary phase
diagram. Then this identity requires that

z':#(i-facc)(—l)‘ = 14+(-1)"
i=0

and reduces to the respective 2 and 3 dimensional Euler identities vertices —edges +faces=2 and
vertices —edges +faces-volumes =0, for n =2 and 3.

A mathematical lattice[6] must contain two special elements, the greatest lower bound(GLB) and
the least upper bound{(LUB). These two elements are such that for all elements z in the lattice,
GLB <z and z <LUB, i.e., they are respectively a suprastructure and substructure of every other ele-
ment, and hence GLB {z=GLB and LUB{z=LUB. In the case of Tp4 p c), @’ served as the GLB
and a’ as the LUB. In general, and more to the point, real phase diagrams will contain interior k-faces
or f-equilibria, so that we may think of a n-ary phase diagram as a complex of n-equslibria. In this case,
the LUB must correspond, not to a single n-equilibria as in Tp4 p c) but to the entire assembly or
complex of f-equtlibria. It turns out that within the incidence calculus, the empty set {} models the
desired behavior of the LUB of the lattice. Hence if the join of two elements maps to the empty set, the
interpretation is that they have only the full diagram complex in common. Note that the LUB is not a
true i-face and is not to be counted in the Schlaefli identity.

The incidence calculus GLB is in general analogous to the incidence set for @ of Tp4 p c}: It con-
sists of all labels assigned to the interior n-equilibria (n-faces) plus the labels assigned to the n +2
regions the exterior of the diagram must be divided into. The n +2 regions and their respective labels
correspond to the n subsytem faces and the upper and lower temperature truncations.

In figure 5 we depict the binary eutectic system cadmium-zinc[1l] with the vertices labeled
v;, =12, - - - ,11. The interior 2-equilibria (phase fields) have been labeled, but in addition, the region
exterior to the border has been broken up into four regions by diagonal lines extending out from the
four corners of the diagram. It is convienent at this point to think of the phase diagram as being drawn
on the front of a balloon, so that the extension of these diagonals meet at a vertex at the back of the
balloon, and hence divide the region exterior to the phase diagram into four regions, or 2-faces, covering
the back of the balloon. These four regions correspond to the border resulting from the two unary sub-
systems and the two temperature truncations, and hence are labeled -Cd,-Zn and -Top,-Base respec-
tively. The incorporation of "-" in a label, while not needed by the algorithm, indicates that these are
exterior labels, in the same way that r "+" signs in a phase field label indicate that there are r +1
phases present.

Although we have not done so, the twelfth vertex at the rear of the balloon, whose incidence set is
{-Cd ,~-2n ,-Top ,~base }, could be added to the other eleven so that the incidence calculus would
account for the entire surface of the balloon, including the exterior faces and their mutual borders.

T We use the notation ( ?) to denou': the number of combinations of v things taken ¢ at a

v
time, whose value is given by ———.
ime, w alueis g y o —7)!
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Figure 5. The eutectic system cadmium-zinc taken from [11), with the vertices annotated by v,, § = 1, 2,
.. ., 11. The connectivity of the phase equilibria are modeled by the incidence calculus of table II.

l Cadmium-Zine E_g_uilibria Incidence Calculus l
K Index Vertex Set Incidence Set K |Index|Vertex Set Incidence Set
1 {v,} {a,L +a,0+p} | {va.v3) {L +a,a+8}
2 {vs} {L +a,L L +B,a+B} 2 | {vyve) {a,a+8)
3 {v;) {A.L +B,a+P} 3 | {vyve) {a.L +a}
4 {ve} {a,a+p5,-Base) 4 {vasv;) {L +B,0+p}
5 {"6} {ﬁ,0+ﬂ,'B¢l¢) 5 {"31”6} {L +0,L }
Vertices! 6 {ve} {a,L +a,L ,-Cd} 6 {va,vs)} {L.,L+p8}
7 {vq) {8,L +8,L ,-Zn} 7 | {vsvs) {B,a+B}
8 {ve} {a,-Cd,-Base} 8 | {v;v;) {B.L +5)
9 {ve} {B,-2n,-Base) Edges] 9 {vevs) {a+8,-Base}
10 {vio} {L ,-Cd,-Top} 10 | {v,v) {a,-Base}
11 {"ll} (L .'Z'I.-TDP} i {05’0'} (ﬂ,-BﬂSt}
1 {"n"m"a-"«'»’s} {Q+ﬂ} 12 {"Gv"ﬁ) (oi’cd)
2 {vavevnviovn} {L}) 13 | {vevyo} {L ,-Cd}
3 {"h"o%»”o} {a} 14 ("71”0) {ﬁ:'z“}
Faces 4 {va,vs,v7,ve} {8} 15 | {vy,v)) {L,-Zn}
5 {v,v2ve} {L +a} 18 | {v,ovy} {L ,-Top}
6 E'."vmull (L +ﬂ} {a+ﬁlL +0,L +ﬂvavﬂv'
LUB 1 {v.}izin {3 GLB | 1 {} g:,alc::-Zn,-
Top}

TABLE Il
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Table II lists the incidence sets which model the topology or "incidences” of the P[Cd,Zn] system
as depicted in figure 5. (Without the twelfth vertex.) The incidence sets corresponding to the 11}
vertices(k =0), 16 edges(k =1) and 7 faces(k =2) are enumerated, as well as the maximal set of
vertices(Vertex Set) whose intersection yields that incidence set. The GLB and LUB are given, but note
that only the GLB must be counted as a £-face, in the identity 11-16+7=2,

The incidence set v;* corresponding to the v; may be read directly off figure 5. For example, v, is
Jlocated at the junction of phase fields a, L +a and a+/ and hence all three are incident on v, so that
v{ ={a,L +a,a+}. Once these v;"s have been determined, the remaining faces and edges may be algo-
rithmically generated from them.

In the fourth column of table I we have listed for each incidence set, the (unique) maximal set of
vertices whose intersection yields that incidence set (as described above). But in fact, these vertex sets
are a second "dual” incidence calculus which models the inverted mathematical lattice, or dual
space[4,8], in which the role of vertices and faces is interchanged. For example, the topological dual for
the prism of figure 2 is obtained by mapping the 6 vertices, 9 edges and 5 faces to a polyhedra contain-
ing 6 faces, 9 edges and 5 vertices, respectively, while simultaneosly reversing the sense of the substruc-
ture < relation. The resulting polyhedra is a "double pyramid”, obtained from a triangular base, with
an "apex” vertex to either side of this face joined to each of the vertices of the base. The incidence cal-
culus for this dual has the same structure as that of figure 3, but inverted, i. e., figure 3 turned upside
down so that what were the vertices at the bottom, become the faces at the top, and the incidence sets
replaced by their respective maximal vertex sets.

The operation of taking the dual is well defined for polytope "shells”, such as the prism, but since
a phase diagram contains structure internal to its border, or shell, its topological dual is more easily
visualized by thinking of it again as being drawn on the surface of a (n+1)-dimensional sphere, where it
may be subsequently thought of as a (n+1)-dimensional polytope in which the phase fields become the
facets of the polytope. For example, the topological dual for a binary (n =2) phase diagram is obtained
by treating it as graph drawn on a sphere where its graph dual{19] is generated. This dual is obtained by
treating the phase field labels as the new vertices (graph podes), and then conpecting those vertices by
edges whose corresponding phase fields were adjoining one another in the original diagram. More gen-
erally, in an n-ary phase diagram, the geometric role of the (n-k)-faces and the k-faces, k=0,1, - - - n,
are interchanged in the dual, while simultaneously interchanging the substructure/suprastructure rela-
tion. More precisely, let k-face denote the (n-k)-face dual of k-face. Then for a maximal vertex set
YipUipn * 7 "a¥ k=012, -n,

k-face’ = v; Nv;; N -+ - Ny;” il and only if k-face’ = {v;,v;, - ",v; }

Hence, the algorithm we have described for computing the incidence calculus for a given phase
diagram automatically generates the incidence calculus for its dual, in the form of the set of its maximal
vertex sets. This duality relationship can be exploited in the following way. In a n-ary system, the &-
faces and the (n-k)-faces are duals and this is reflected in the fact that their corresponding incidence sets
are "inversions” of each other. For k =0 for example, we can invert the vertices, mapping them into
the incidence sets for the dual n-faces, by the following procedure: For each n-face label L, we list the
set of vertices v; for which the label L is a member of v;’s incidence set. This results in the maximal
n-face set for L or dual incidence set for "vertex” L.

For example, in table I, L appears in the incidence sets for vertices v,,vg,v7,040, and vy, and
hence the dual incidence set for L is L ={v,,v4v39,0,v;}, which is the maximal set of vertices
whose intersection is {L }.

The practical consequences of all of this is that once the v;”s have been determined, the remaining
incidence sets can be generated from either the v;”s or from the dual incidence sets for the n-faces. In
table II, for example, we can generate the incidence calculus by taking combinations of the face vertex
sets. Since there are much fewer combinations in 6 faces than in 11 vertices, the computation required
will be much less, and in general, since the number of phase fields is much fewer than the number of
vertices, it will be less expensive computationally to generate the incidence calculus from the n-faces.
But the n-faces can be generated from the v;”s by inverting them, so in fact we can start with either the
vertex incidence sets or the n-face incidence sets. This combined with the method we have discovered
for reducing the number of combinations which must be searched is the basis for a practical algorithm
for generating the incidence calculus for phase diagrams.
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Figure 6. The nickel-tantalum system taken from {12]. The vertices are annotated by v, § =1, 2, .. ., 37,

and provide the vertex incidence sets from which the remaining topological relationships may be calculated. Its
incidence calculus is given in table Il
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A more complex binary, the nickel-tantalum system, taken from {12}, and with the vertices labeled
v;, $=1,2 - - - 37 is graphically depicted in figure 6. The incidence calculus is given in table III, and in
fact, since the number of phase fields is 26 and the number of vertices is 37, was calculated by inverting
the vertices, calculating the dual, and listing the dual maximal vertex sets as the originally desired
incidence sets.

In order for distinct s-faces to map to distinct i-face’ incidence sets, the incidence calculus
requires that the ¢-faces be incident upon distinct sets of vertices This is not strictly true for all /-
equilibria. For example, in a binary isomorphous system, i. e., complete solubility at all compositions as
in the binary subsystem A-B in the ternary of figure 8, the solidus and liquidus boundaries as well as the
L +a phase field are all incident on the same vertices, namely v; = {~Component,,a,L +a,L} and
v, = {-Componenty,a,L +a,L'}. As a result, their join, v,{v, is not unique, but consists of both the
solidus and liquidus boundaries. The incidence calculus reflects this by producing for v,tv,,
vy Nvy = {a,L +a,L }, which is correct topologically but unexpected. That it is correct topologically
may be seen by interchanging the solidus and liquidus boundaries, i. e., changing just metric attributes,
and noting that vy and v, remain the same. This incidence set must be interpreted as modeling all
three, namely, the solidus and liquidus boundaries and the L +a phase field separating them, since the
intersection of the two (identical) boundary incidence sets is again the same boundary incidence set. In
table V, containing the incidence calculus for the ternary of figure 8, this has happened to edge 31. In
general, this will happen in a n-ary phase diagram when two (n -1)-faces are incident on the same ver-
tices, i.e., are "parallel”.

When this happens, it may be detected algorithmically, by applying an identity relating the
number of vertices v in the associated intersection, the number of elements p in the resulting intersec-
tion value and the dimension n, ie., if v=n, then v+p = n+2. For example, in a binary
system(n =2), an edge is incident on two vertices(v=2), and separates two phase fields(p =2), and
hence 2+2 = 2+2. For the incidence set {a,L +a,L } this does not hold since p =3.

For ternary diagrams, two incidence sets may have to be mutually interpreted. For example, the
three phase region L +a+8 of figure 8 and two of this regions faces have mutuslly identical incidences.
The algorithm we bave described generates the incidence sets {L +a,a+8,L +a+8} and
{L +8,a+8,L +a+B}, but these must be interpreted as the volume {L +a+f}, and the two faces
{L +a,L +a+B} and {L +5,L +a+}. We have not worked all the rules, but believe that all such cases
are amenable to algorithmic interpretation.

The problem of non-unique incidence sets may also be solved by introducing "pseudo” vertices.
For example, the melting point vertex of an isomorphous system may be replaced by two vertices, both
at the same metric coordinates, but incident on distinct sets of phase fields.

TABLE II: Nickel-Tantalum Incidence Calculus
e — —
K Jlndeq Vertex Set | Incidence Set
i {vs} {Ni+L ,Ni+Ni;Ta ,L +Ni;Ta, L}
2 {v,} {Ni+L ,Ni,-Nickel,L }
3 {v10} {Ni+NiyTa ,Ni+NigTa ,NigTa ,NigTa +Ni3Ta}
4 {vs} {L +Ni3Ta ,Ni;Ta +L ,Ni3Ta,L}
5 {vis} {Ni;Ta+L ,Ni;Ta+L ,Ni;Ta+NiyTa ,Ni,Ta}
6 {vs} {Ni,Ta +L,L +NiTa ,Ni,Ta +NiTa ,L}
7 {vs} {L +NiTa,L +NiTa,,NiTa ,NiTa +NiTa,}
8 {va} {L +NiTa,,L +Ta ,NiTa,,NiTa,+ Ta }
9 {vq} {L +Ta,Ta,-Tantalum,L }
Vertices| 10 {vi} {Ni+L ,Ni+Ni;Ta,Ni}
1 {vi3) {Ni+Ni;Ta,L +Ni3Ta,Ni;Ta}
12 {ve} {Ni+Ni;Ta ,Ni +NiyTa ,Ni}
13 {via} {Ni+Ni;Ta ,NigTa +Ni;Ta ,Ni;Ta}
14 {VQ} {NiaTd +L ,NI»-QTG +L,L}
15 {vig} {Ni;Ta+L Ni;Ta ,NiyTa+Ni;Ta}
16 {vis} {Ni;Ta +L ,Ni;Ta ,Ni,Ta +NiTa }
17 {vy {L +NiTa ,L +NiTa,,L}
18 {U”} {L +NiTa ,N‘zTa +NiTa ,NSTG}
19 {v3} {L +NiTa, L +Ta,L}
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TABLE II: Nickel-Tantalum Incidence Calculus

K Jindex] Vertex Set B Incidence Set
20 {vy} {L +NiTa,,NiTa +NiTa ,,NiTa,}
21 {va} {L +Ta,NiTa,+Ta,Ta}
22 {023}’ {Ni +N£8Tﬂ ,Nl.gTa ,-BMC}
23 {va} {Ni +NigTe,Ns ,-Base}
24 {024} {leTa ,N‘QTG +NI3T¢ ,-B“C}
25 {vas) {NigTa +Ni;Ta ,Ni;Ta ,-Base}
26 {vae} {Ni;Ta ,Ni;Ta +Ni,Ta ,-Base}
27 {vy} {Ni3;Ta +Ni,Ta ,Ni,Ta ,-Base}
Vertices 28 {vas) {Ni,Ta ,Ni;Ta + NiTa ,-Base}
29 {vao} {Ni,Ta +NiTa ,NiTa ,-Base}
30 {v30} {NiTa ,NiTa +NiTa,,-Base}
31 {va} {NiTa +NiTa,,NiTa ,,-Base}
32 {v3s} {NiTa,,NiTa s+ Ta ,-Base}
33 {vss) {NiTay+ Ta ,-Base,Ta }
34 {v) {Ni ,-Base,-Nickel}
35 {vas} {-Base,Ta ,-Tantalum}
36 {vas} {-Nickel-Top,L }
37 {vy) {-Tantalum,-Top,L }
1 {v.,v"} {Nl +L 'N‘+Nl3TC}
2 {vy,v11} {Ni+L ,Ni}
3 {v1,vs) {Ni+L,L}
] 4 {Ug,ﬂ'n} {Nl.'*'NI;TG ,L +Ni3Tﬂ}
5 {ve,v10} {Ni+Ni3;Ta ,Ni+NigTa}
6 {010,012} {NI +N‘3T¢ |N‘.QT¢ +N‘3T¢}
7 {v,,,vn} {NI+N|3T¢ ,N‘gTG}
8 {VQ,U“} {N‘ +N‘3T¢ ,NC.}
9 {vs,vy3} {L +Ni3Ta ,Ni;Ta}
10 {01,03} {L +N‘3T¢ ,L }
11 {ve,v15) {Ni;Ta +L NiyTa +L}
12 {07,0“} {N‘;Tﬂ +L ,Ni;Ta}
13 {v16v15} {Ni3Ta+L ,Ni;Ta +Ni,Ta}
14 {ve,v7} {Ni;Te+L,L}
15 {U 15,0"} {Nt,Tu +L ,NI'QTG }
16 {vs,v16} {Ni;Ta +L ,Ni3;Ta +NiTa }
17 {”5,05} {NI:T‘ +L ,L)
18 {v,vis) {L +NiTa ,L +NiTa,}
Edges | 19 {vs,v17} {L +NiTa ,Ni,Ta +NiTa}
20 {v”,vu} (L +NiTa ,N‘.Ta }
21 {vevs) {L +NiTa,L}
22 {v3,v} {L +NiTa,L +Ta}
23 {v18v310} {L +NiTa,,NiTa +NiTa,}
24 {vy19,V20} {L +NiTa, NiTa,}
25 {vave} {L +NiTa, L}
26 {vao,v ey} {L +Ta ,NiTay+Ta}
27 {02,')21} {L +Ta,Tﬂ}
28 {vavs} {L+Ta,l}
29 {v,o,vzg} {N|.+N|.QTG ,NigTﬂ}
30 {vovae} {Ni+NigTa ,Ni}
31 {U”,vzs} {Ni+N‘g Ta ,'B“C}
32 {Uu)ﬂJz‘} {N‘QTC ,N‘QTG +N|3Ta}
33 {v43,v24} {NiTa ,-Base}
34 {0]2‘1,025} (N'.sTa +N‘3Tﬂ ,Nl-aTG}
35 {vaevas} {NigTa +Ni;Ta ,-Base}
36 {014,025) {Nl.;gTa,Nl.aTa +N$2T¢}
37 {ves,v26} {Ni;Ta,-Base}
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TABLE III: Nickel-Tantalum Incidence Calculus
K llndex] Vertex Set Incidence Set ﬁ

38 {vis,v 27} . {Ni3Ta+Ni,Ta ,Ni,Ta}
39 {v2e,var} {Ni;Ta +Ni,Ta,-Base})
40 {vievas) {Ni;Ta ,Ni;Ta+NiTa}
41 {v2r,v26} {Ni,Ta ,-Base)}
42 {v17,v2} {Ni,Ta +NiTa ,NiTa )}
43 {vae v} {Ni,Ta +NiTa ,-Base}
44 {vis,v30} {NiTa ,NiTa +NiTa,}
45 {va0:v30} {NiTa ,-Base}
46 {vieva} {NiTa +NiTa, NiTa,)}
47 {vs0v3s} {NiTa +NiTa,,-Base}

Edgee 48 {Um,032} {N‘TGQ,N‘TGQ"‘ TG}
49 {vanvas) {NiTa,,-Base}
50 {vazvas) {NiTa s+ Ta ,-Base}
51 {va1,vas} {NiTay+Ta,Ta}
52 {vaa,va} {Ni ,-Base}
53 {vivad) {Ns ,-Nickel}
54 {vsavas} {-Base,Ta }
55 {va,vss} {Ta ,-Tantalum}
56 {vivas} {-NickelL}
57 {vavs) {-Tantalum,L }
58 {vse.vy} {-Top,L }
1 {vivavn} {Ni+L}
2 {v8,90,910,%11,912:%13) {Ni+Ni;Ta}
3 {ve,vevia} {L+Ni;Ta)
4 {vev7,v14v15) {Ni;Ta+L}
5 {”5»”0)"!&” IG} {Nisz +L}
6 {vevs5,57,918} {L +NiTa}
7 {v3,v6v18Y19,v 20} {L +NiTa,}
8 {va,v3,v20,92} {L+Ta)
9 {ve,v10,9 22,23} {Ni +Ni,Ta}
10 {vinvas,vadd {NigTa}

Faces 1 {viov12v20v2s} {NigTa+Ni;Ta}
12 {"1»""'"1:,"1«":5,"»} {N'iT‘}
13 {”M)”ISO"”’"!'I} {Nl.zTG +Nl'2T¢}
14 {vis,v16va7,v28) {Ni;Ta}
15 {”Sv”lﬁv"l‘hvﬁvvﬂ} {N‘gTB +N3Ta}
16 {”11,"13,029,"30} (NtTd}
17 {vis,v10,v30,v 01} {NiTa +NiTa,}
18 {v10:v20,V31,¥ 32} {NiTa,}
19 {"zo,”zh”:zy”n} {NB'TGQ"P Td}
20 {vi,vo,v1,v2anva} {Ni}
21 {va,v21,v353,v3s} {Te}
22 {vhv2'u3!”&”5)"07”]!"&”&"37} {L}

LUB | 1 {viticim {)

{Ni+L ,Ni +Ni3Ta ,L + Ni3Ta ,Ni3Ta+L ,Ni,Ta+L,
L +NiTa,L +NiTay,L +Ta ,Ni +NigTa ,NigTa,
GLB 1 {} N‘QTE +N£3TG ,NC.3 TG ,N.';g TG +Nl.2T¢ ,N"g TG )
Ni,Ta +NiTa ,NiTa ,NiTa + NiTa o, NiTa,,
NiTa,+Ta ,Ni,-Base,Ta ,-Nickel,
-Tantalum,-Top,L }

TABLE 1l
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In order to suggest ways in which the incidence calculus may be used to model not only the topo-
logical relationships in phase equilibria, but also thermodynamic relationships, we make the following
informal definitions:

J-equilibria® = the incidence set of the k-face denoting f-equilibria.

# (f-equilibria’) = number of phase field labels in f-equslibria’.

#P (f-equilibria’ ) = number of distinct phase labels in f-equilibria’ .

# P *(f-equilibrium,’ f-equilibrium,’) = number of phases which appear in going from f-equilibrium,
to f-equslibrium,.

# P (f-equslibrium,’ f-equilibrium;,’) = pumber of phases which disappear in going from
J-equslibrium; to f-equilibrium,.

# V (f-equilibria) = [ , the degrees of freedom, or variance for f-equilibria.

F (f-equilibria) = the k-face denoting f-equilibria. Note that k > f .

I(f-equilibria®) = the dual incidence set for f-equslibria’.

#D (f-equilibria’ ) = k, the topological dimension of the k-face denoting f-equilibria’.

Note that # V(f-equilibria)<#D (f-equilibria’), e.g., for a binary eutectic e, #V (e )=0 and
#D (e’ )=1. All operations except #V are directly computable from the given incidence set. While
#V is not, it may be calculated by applying Gibb's phase rule,

Let C=n be the number of components in a n-ary iso-baric temperature-composition phase
diagram. Then a number of qualitative principles may be expressed in terms of the incidence calculus.
For example, we give informal translations of the following:

(1) Gibbs Phase Rule [1,2,13,15]): Gibbs phase rule allows the calculation of #V by the following:
# V (J-equilidria) = C -#P (f-equilibria)+1

(2) E.oundagx Rule [14): A phase region f-equilibrium is bounded by phase regions g-equilibria, g < f ,
whose number of phases is constrained by:

#P (g-equilibrium’ ) = #P (f-equilibrium’ )+(C ~#D (MEET (g-equikibrium’ f-equilibrium’ ))
The phase fields i.e., n-faces of a n-ary diagram, as a special case, gain or lose at most one phase
in passing through a (n -1)-face:
If (n-1)-equilibria’ = {n-equilibrium,,n-equilibrium,} then
#P (n-equilibrium,”) = # P (n-equilibrium,’)+1

(3) Contact Rule [15] or Law of Adjoining Phase Regions Rule [2]: This rule constrains the dimen-
sionality of the meet of two f-equilibria in terms of the number of phases added and deleted in

passing through the meet. .
F (f-equslibria, | f-equilibria,) = k-face if and only if
k =n ~$ P~(f-equilibrium,’.f-equilibrium,)}-# P * (f-equilibrium,’,.f-equilibrium,’) >0

We have been very informal here. To be complete, a discussion of how phase field labels are to be
encoded, including external face labels, and precisely how the operations defined above are to be com-
puted must be given. .

Hillert, in [13], surveys general topological principles underlying phase diagrams and related
methods for giving a qualitative geometric interpretation to thermodynamic equilibria. We suggest that
these and other qualitative principles, expressed in terms of operations on incidence sets, provide a com-
putational basis for modeling phase equilibria topology.
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6. THE INHERENT SUBSYSTEM INCIDENCE RELATIONS IN A MULTICOM-
PONENT PHASE DIAGRAM DATA BASE

We envision a relational data base[16,17) in which the individual f-equslibria for a given fixed
phase diagram become the objects for which various attribute values are stored. Included as attributes
are the incidence set, its location in temperature-composition space(coordinates for vertices, parametric
functions for edges and surfaces etc.), and other information specific to that f-equilibria. This organiza-
tion reflects our belief that the topological information, i.e., the incidences between the f-equilibria, must
not only be explicitly represented in a data base, but in fact provide the natural structure upon which to
"hang” the metric attributes of individual f-equilibria. Such a representation links the ability of the
computer to perform qualitative reasoning with quantitative calculations, and constitutes the within
diagram or "intra-diagram” data base. In the preceding sections, we have described what we call the
intra-diagram jncidence calculus, A collection of diagrams represented in this manner potentially consti-
tutes a between diagram or "inter-diagram” data base. Questions of type 5 are then a matter of under-
standing the natural relationships that exist in this inter-diagram data base. We give a brief overview
of these inter-diagram relationships.

Let [a,,az, - ,a, ] denote a fixed ordering, called a component sequence , of the n components
61,89, ° ** G, makmg up a n-ary phase diagram. Denote by [a, ]/, 0<s <j <n, the compatible com-
ponent sequence set consisting of the collection of ordered component sequences in which the n com-
ponents a@,,a,, * * *,a, are taken 0<s, §+1, -+ ,5-1, § <n at a time. Further, denote by P/[a,] the
collection of phase diagrams, each member of which corresponds to a unique component sequence in

[a,]7. Note that the collection P/[a,] contains t( ! ) distinct phase diagrams. In case
k=i

§=j=n, [a,]7, abbreviated to [a,], there is a single n-ary phase diagram, again abbreviated to P[a, ],

and even more briefly as P, corresponding to the single component sequence [6,,8, * * * ,a,].

More specifically, let [e;,e4, * * * ,€ m] denote a fixed component sequence for the maz elements of
potential interest in a phase diagram data base, and let U e, denote the max-ary "universal” phase
diagram on these maz components. Then all phase diagrams P and Q of potential interest may be
thought of as subsystems of U, or to be more precise, members of U™ [e;,€4, * * * ,€may)-

If [a,] and [b,, ] are two component sequences, both members of [€ s }g™, We say [a, ] is an p-ary
sub-component sequence of [b,] if and only if for n <m, and for all §, 0<i{<n, there is a
5,055 <m,i<j such that ¢, =b,, and denote this relationship by [a, ] <<[bs ]. Note that for com-
ponent sequence [a,), the corresponding phase diagram Pla,], has n, (n-1)}-ary subcomponent
sequences, each of which correspond to a phase diagram in the collection P73 [a,]. Further, if Pa,)
and Q [b,] are p-ary and g-ary phase diagrams respectively, for which [a, ] is a sub-component sequence
of [5, ] we define the phase diagram sybsystem relation < < which may exist between them as:

[a ) <<[b, ]
Ple,] << @QIb,] if and only if {[a,])<<]|e mel
[bq]<<[¢mn]

Hence, for all phase diagrams P of potential interest, P << U. However, given two arbitrary sub-
systems P and Q of U, if both contain components not contained in the other, then neither P << @Q
or @ << P, and hence the relation < < induces a partial order on the elements of U™ [e,,), i.e., the
subsystems of U. In analogy with the equilibria join 1 and meet | for k-faces, we define the subsystem
join 11 and meet |} of any two subsystems P and @ of the universal phase diagram U:

r2>maz(p,q)
Rle,]>>Pla,)
Pla,] 11 Qlb,) = Rle,) ifandonlyif Y p 10 155 0, ]

r t& minimum
r<min(p,q)

. . Rlec,]<<P|a,]
P[“p] i Q[bcl = R|c,] if and only if R[Cy]<<leo]

r §8 weT um
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The subsystem relation << along with the join {1t and meet || operations define a subsystem
incidence lattice in which the universal system UJle..,]=U is the LUB and the 0-ary system
UQ |€ max)=0[€ may) is the GLB. It is this mathematical lattice of phase diagrams that we have denoted
by Ug™" [€mss), 8nd note that its structure models the natural relationships which exist betwuen the
various subsystem phase diagrams of the universal phase diagram Ule,,e,, <« *,e,,] Hence, the
intrinsic incidence relationships inherent in the inter-diagram data base Ug™" [en,,) are modeled by the
same structures used in modeling the f-equilidria intra-diagram data base. The n-ary transition equili-
bria information is in the interior of the n-face, while the (n -1)-faces, (n-2)-faces, - - - , 0-faces con-
tain the (n-1)ary, (n-2}-ary, ... , 0-ary subsystem equilibria respectively. This induces an inter-diagram
incidence lattice defined on the collection of individual intra-diagram incidence lattices. This becomes
apparent when we consider the ternary prism shell P{A,B,C].

To pursue this example, refer back to the ternary prism of figure 2. Here the universal diagram
U$[A,B,C|is P[A,B,C], and the subsystem lattice Ug [A ,B,C] consists of P3 [A ,B,C]=LUB, its
subsystems P#|A,B,C|={P|A,B), P|B,C), P|C,A)}, its subsubsystems
P!|A,B,C|={(P|A), P[B}, PIC)} and PQ A ,B,C]=LUB. Hence
P{A,B|1t P[B,C]= P[A,B,C] and P|A,B] || P[B,C] = P|B] for example. It is this incidence
lattice that the incidence calculus Tp 4 g c; given in table I models since in fact none of the faces con-
tain interior equilibria. This is just the relationship between the ternary of figure 1 and the correspond-
ing barycentric coordinate system shell of figure 2. Each of the three subsytem faces contribute a unique
label to that subsystem’s label set, so that the three binary incidence calculii may be easily distinguished
within the ternary incidence calculus. We call the incidence sets corresponding to this subsystem

incidence lattice, the subsystem incidepce calculys.

These subsystem relations are of course well known, but we have elaborated them here because we
see them as an important consideration in the architectual design of a multicomponent phase diagram
data base. While the intra-diagram incidence lattice varies from diagram to diagram, the subsystem
inter-diagram incidence lattice is fixed and provides a framework upon which to hang shared phase
equilibria information in a consistent manner.

The incidence calculus for this framework is relatively straight forward to calculate for an arbi-
trary npumber of components n. For example, figure 7 is the four component, i.e., quaternary, analogue
of figure 2 and the calculated subsystem incidence calculus for it is given in table IV. Note that the 4-
Jace is really the LUB, but for consistency we have included the (redundant) empty set {} corresponding
to the interior complex of ¢-faces, of which there is only the single 4-face a.

In general, for a n-ary phase diagram within a n component barycentric coordinate system with n-
1 axes and one additional linear axis, e.g., temperature, the number of s-faces, for s=0,1, - ,n is
easily calculated. Let F;” be the set of i-faces of dimension ¢, and denote by #(S) the number of ele-
ments in the set S. Then the number of s-faces of dimension ¢ is given by:

2n =0 (vertices)
#(Ff) = 125) +(7) 0<i<n
2 i=n (interior and exterior)

For example, the number of (n-1)-faces of a n-ary system is obtained by setting ¢ to n-1, and is
given by 2( 5 ) + (,")) = 2+n, which corresponds to the n subsystem faces and the two truncated faces
of the temperature scale. The term (] ) is the number of (i-ary)-subsystems in F,", denoted by S, while
the term 2(, §;) is the number of "end” s-faces created by the upper and lower temperature range trun-
cations.

Given the existence of the incidences between the subsystems of a multicomponent phase diagram
data base, as outlined above, we next briefly outline what is meant by algorithmically computing the
meet and join of two incidence lattices corresponding to elements of Ug™* [e 1]

7. AN OPERATIONAL CALCULUS FOR A MULTICOMPONENT PHASE DIAGRAM
DATA BASE

In particular we are interested in facilitating a "bootstrapping” process whereby the lower order
systems in conjunction with the application of the generic rules of thermodynamics, as well as their
application to specific systems, and including Iaboratory data, are used to build a multicomponent phase



Quaternary

Ternary ()=
A CA D C DD B
B B A c
Binary [ (;)=6
A BC AA DB CB DD C
Unary (:)=4
A B C ' D

Figure 7. A schematic of a quaternary "coordinate shell” and its decomposition into faces of decreas-
ing dimension. Except for the truncated temperature base and liquidus faces (not shown), these faces
correspond to the subsystems of decreasing dimension from which it was composed. Its incidence cal-
culus is given in table IV.
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Quaternary A-B-C-D Subsystem Incidence Calculus
K Index Vertex Set Incidence Set Subsystem
1 {v:} {-Base,a,A-B-D,A-B-C,C-A-D}
2 {vs} {-Base,a,A-B-D,A-B-C,B-C-D)
3 {v3} {-Base,a,A-B-C,C-A-D,B-C-D}
0-Faces 4 {v4} {-Base,a,A-B-D,C-A-D,B-C-D}
3 {vs) {a,-Top,A-B-D,A-B-C,C-A-D}
6 {ve} {a,-Top,A-B-D,A-B-C,B-C-D}
7 {vs} {a,-Top,A-B-C,C-A-D,B-C-D}
8 {vg) {a,-Top,A-B-D,C-A-D,B-C-D}
1 {v,v3} {-Base,a,A-B-D,A-B-C}
2 {vy,v3)} {-Base,a,A-B-C,C-A-D}
3 {vi,ve} {-Base,a,A-B-D,C-A-D)
4 {vy,vs} {a,A-B-D,A-B-C,C-A-D} Unary A
5 {vav3) {-Base,a,A-B-C,B-C-D}
6 {vavy) {-Base,a,A-B-D,B-C-D}
7 {vq,ve} {a,A-B-D,A-B-C,B-C-D} Unary B
1-Faces 8 {03,04} {'B”C,a, C'A'D,B‘C’D}
9 {vavq} {a,A-B-C,C-A-D,B-C-D} Unary C
10 {vevs} {a,A-B-D,C-A-D,B-C-D} Unary D
11 {vs,ve) {a,-Top,A-B-D,A-B-C}
12 {vs,v7} {a,-Top,A-B-C,C-A-D}
13 {vs,vs} {a,-Top,A-B-D,C-A-D}
14 {vev7} {a,-Top,A-B-C,B-C-D}
15 {ve,vs} {a,-Top,A-B-D,B-C-D}
16 {vs,v¢} {a,-Top,C-A-D,B-C-D}
1 {vy,vq,us,v} {a,A-B-D,A-B-C} Binary A-B
2 {v1,v3vsv7} {a,A-B-C,C-A-D} Binary A-C
3 {vi,vevsvs) {a,A-B-D,C-A-D) Binary A-D
4 {02,03,05,01} {G,A-B-C,B-C°D} Binary B-C
5 {va,v4veve} {a,A-B-D,B-C-D} Binary B-D
6 {va,vev7,vs} {a,C-A-D,B-C-D} Binary C-D
7 {”19”2)”3} {*BMC,&,A-B-C’}
Faces 8 {" h”m"c} ('BG‘C,Q,A-B-D}
9 {”Io"lt"d} (-BMC,Q,C-A-D}
10 {va,vav) {-Base,a,B-C-D}
1 {”51"0:”7} {a,-Top,A-B—C'}
12 (”51”&"0} (a»'TOP!A'B'D}
13 ("5!”7»”0} {a,-Top,C-A-D}
14 {"ov”'h”e} {a,-Top,B—C—D)
1 {"h”z,”a,”s:"e,%} {G,A-B-C} Ternary A-B-C
2 {vi,v2,v,vs5,veve) {a,A-B-D} Ternary A-B-D
3 Faces 3 {v,v3,94v5Y7,vg} {a,C-A-D} Ternary C-A-D
4 {vq,v3,04v4,v7,vg} {a,B-C-D} Ternary B-C-D
5 {”1,02,”3,04) {-Ba.ac,a}
6 {vs,vg,v5,08) {a,-Top}
4-Faces 1 {v,9,03,04Vs5,05v7,0g)} {a} Quaternary
GLB 1 {} {-Base,A-B-C,a,-Top,A-B-
D,C-A-D,B-C-D}
LUB 1 {vidioye {}

TABLE IV
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diagram data base. The role of the subsystem incidence calculus is that of an operational representation,
amenable to computer manipulation, and acts as a complement to thermodynamic modeling by provid-
ing the superstructure upon which to hang the metric attributes such modeling generates.

For each element P [a,] of Ug™* [e,,] there is an intra-diagram incidence calculus Tp ls,}- This

collection of incidence calculi, corresponding to the individual calculi of elements in Ug™ [e,..,], we call
max

the inter-diagram incidence calculus , and denote it by D Ve 1:_“). The abstract partial order between

the elements of Ug™* [e ,,] may be expressed operationally in terms of their individual incidence calculi
as .

Ple,] << Q[b,] if and only if TPI"] Cr TQ"'} ,

where C 1 is a suitably defined sub-lattice relationship defined on the incidence calculi. For example,
given the incidence sets for Tp4 g c), (Which strictly speaking is a subsystem incidence calculus, but
the techniques are the same), we can readily identify the subcalculus for Tp4 g as consisting of those
incidence sets containing the label A-B, eg., Tpis 5~ {8€Tpy 5 c) |IA-B€s}. These are
G',uy,vs,vq,v5,612,€14,625 8nd eg,. However, in order for the set theoretic operations modeling
<, 1 and | to work, we must remove all labels A-B, and replace labels of the form C-A with A and A-B
with B. The empty set {}=GLB and the set containing all the resulting labels, the LUB, must also be
added.

The computation associated with the meet || is motivated by wanting to find the incidence cal-
culus for the subsystem of highest dimension common to several systems.

Given P|a,], Q[b,] and R [C, ) such that
Ple,] Il Q[4,] = R[C,]

then clearly we want
Tpie,) N1 Tou,) = Tric,)

where again Ny is a suitably defined "intersection” on incidence calculi. Again, using Tp 4 5,c) 88 80
example, if we are given P|A,B||{Q[B,C] = R |B], then we are interested in defining N so that
Tpia 801 Toi8.c) = Tr|p)- This will be true if we define it as

TriasNr Toipc) = {818€Tp 4 p)and 8 €T 5 c)}
suitably relabeled with the LUB and GLB added.

The much more interesting possibility is that of being given the incidence calculi for the n (n-1)
ary systems of PJ' [a,.], with the objective of "bootstrapping” up to the minimally induced incidence
calculus containing the given incidence calculi as subcalculi. Let the n elements of P! {a, ] be denoted
by P;[e.], and their corresponding incidence calculi by T;{a,],i=1,n. By definition
Pile,]11Pjla,] = Ple,], 1<¢,5<n, i7#j, and we are interested in "computing” Tp|, |- Again we
are interested in defining a "union” operation Uy such that

TiloaJUr Tola,JUr " Ur Ty la,] = Tl’(c‘]

As an example, figure 8 consists of a generic ternary P [A ,B,C) made up of an isomorphous sub-
sytem P [A ,B], and two eutectic subsystems P (B ,C| and P [C,A|. Hence,

P[A,B,C]= P[A,B|11P[B,C|11P|C,A]
and we want to find a minimally induced incidence calculus Tp (4 5.c) 80 that
Tpia.8.c1= Tria.8)Ur Teip,ciUr Tpic.a)

In this case the two eutectics must extend to form an "eutectic trough”, but no internal vertex
(ternary eutectic) is required, as say would be the case if all three binary subsytems were of the eutectic
type. Hence only sharing of unary subsystem vertices and reinterpreting £-face labels (phase fields) as
S-face labels (phase volumes) must be done. One of (in general there will be more than one) the resulting
minimally induced incidence calculi, Tpi4 g c) (Which includes an hypothesized three phase field
L +a+P), is depicted in table V.
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Figure 8. A schematic of a ternary made from two eutectic and one isomorphous system. Its incidence
calculus is given in table V, and is potentially calculatable from the three incidence calculi of the subsystems
composing it.
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TABLE V: Generic Eutectic-Eutectic-Isomorphous Ternary

K Index Vertex Set | Incidence Set
1 {vi} {B-C,a,a+B,L +a,L +a+p}
2 {vs} {B-C,L L +B,a+B,L +a,L +a+p}
3 {va} {B-C,L +f,a+p,L +a+p}
4 {vd {B-C,a,a+pB,-Base}
5 {vs} {B-C,B,a+p,-Base}
6 {ve} {C-Ae,c+B L +a,L +a+p}
7 {vq) {C-AL,L+Ba+8L +a,L +a+p)
. 8 {ve} {C-A 8L +B,a+B,L +a+p}
Vertices 9 {ve} {C-A,a,a+p,-Base}
10 {vio} {C-A,B,a+pB,-Base}
11 {vi} {B-C,C-A,p,L +B,L ,-Top)
12 {v12} {A-B,B-C,L +a,a,L ,-Top}
13 {vis) {A-B,C-A,L +a,a,L ,-Top)
14 {vid {A-B,C-A,a,-Base}
15 {vis} {A-B,B-C,-Base,a)
16 {vie) {-Base,C-A,B-C,8}
1 {vivs} {B-Cia+8,L +a,L +a+p}
2 {vive} {B-C,a,a+p8}
3 {vive) {a,0+B,L +a,L +a+B}
4 {vi,vy3} {B-C,a,L +a}
5 {vavs} {B-C.L +B,a+B,L +a+p}
6 {vav7} {L,L +B,a+B,L +a,L +a+P)}
7 {vavn} {B-C,L ,L +p}
8 {vsv13} {B-C.L,L +a}
9 {vavs} {B-C,B,a+8}
10 {va,ve} {B.L +B,a+p,L +a+p})
11 {vavn) {B-C,B,L +B}
12 {vavs) {B-C,a+8,-Base}
13 {vyve} {a,a+p,-Base}
4 {vevis) {B-C,a,-Base}
15 {vsv10} {B,a+p,-Base}
16 {vsiv10} {B-C,B,-Base}
Edges 17 {vevr) {C-A,a+B,L +a,L +a+f)
& 18 {vevo} {C-A,a,a+8)
19 {vevia} {C-Aa,L +a}
20 {va,ve} {C-A,L +B,a+B,L +a+p)}
21 X {C-A,L L +8)
22 {va,v13} {C-A,L,L +a}
23 {"lr”IO} {C-A,ﬂ,0+ﬂ}
24 {vevn} {C-A,B,L +p}
25 {ve,v10} {C-A,a+p,-Base}
26 {vavid) {C-A,a,-Base)
27 {v10,v16} {C-A,B,-Base}
28 {v11,v12} {B-C,L ,-Top}
29 {vi,vi3} {C-A,L ,-Top}
30 {vinvie) {B-C,C-A,8}
31 {vi2,v13} {A-B,L +a,a,L ,-Top}
32 {v12,v15} {A-B,B-C,a}
a3 {vi3,v14} {A-B,C-A,a}
34 {v14,v35} {A-B,a,-Base}
1 {vi,v2,93v697vs} {a+B,L +a+8)
2 {vi,va,v3v4vs5) {B-C,a+p8)
Faces 3 {00.01.%,"0,”10} {C’A,&*‘ﬂ}
4 {vi,vuvevo} {a,a+8}
5 {vi,v 12} {B-C,c}




Algebraic Representation of Phase Diagrams

-21-

TABLE V: Generic Eutectic-Eutectic-Isomorphous Ternar,
K Index Vertex Set Incidence Set
6 {vi,vevi2vis) {a,L +a}
7 {v2,v7,952,9,3)} {L,L+a}
8 {03)051”&” 10} {ﬁ,0+ﬂ}
9 {va,vs5v15,v6) {B-C,8}
10 {vavs,ve,v 0} {a+p,-Base}
1 {vovs,visvie) {B-C,-Base}
12 {voveviovis) {a,-Base}
13 {veve,v13,v14} {C-A,a}
14 {ve,v10:¥11,v16} {C-A,6}
15 (vg,ﬂlo,v‘4,|’|6} {C'A,'BMC}
Faces 16 {vi2,v12,9 1615} {A-B,a}
17 {vivavi) {B-C.L +a}
18 {va,vgvy} {B-C,L +8)
19 {va,vs,vy} {L,L+p}
20 {”21"!!1”!2} {B’Crl‘}
21 {va,ve v} {B,L +5}
22 {vs5v10:v10} {B,-Base}
23 {vevs,vis} {C-A,L +a}
24 {"71"0"’)!} {C'Avll +ﬂ}
2% {"‘h"ll'”ll} {C-A,L}
26 {vivyovys) {L,-Top}
1 {vlv”2v"3v"4)"5)"6!”7»"8»”9!” IO} {a+ﬂ}
g {”ly{”h”h"'v"l!r” u-”u-}" 15} {lfa} }
V),VaVe, U7,V 19V 13 +a
Volumes 4 {vavs5veviovis,ie} {5}
5 {va,va,vy,ve vy} {L+p}
6 (02"’7'" T4 l21v18} LL}_
GLB 1 {} {L +a+B,a+B,L +B,L +a,L ,-
Top,A-B,a,-Base,C-A,B-C,f}
LUB 1 {vi}ieiae {}
Special * 1 {v1,va,vev7)} {a+B,L +a,L +a+8}
2 {va,v3v7,06) {L+Ba+B L +a+p}
TABLE V

To make sure there is no misunderstanding in what we are outlining, it should be emphasized that
in suggesting a method for hypothesizing a minimal topology we are in no way modeling or predicting
a-priori what the actual higher dimensional phase diagram topology is, but rather only providing a for-
malism for enumerating the simplest possibile topological extrapolations consistent with the subsystem
topologies. It is minimal in the sense that it is a subset of the actual topology, since for example, the
existence of a ternary miscibility gap or ternary compound can not be known from just the binary sub-
sytems. Additionally, qualitative thermodynamic rules, expressed in terms of incidence calculus transfor-
mations, potentially provide a formal way of decreasing the number of possible topologies even further.

8. FUTURE RESEARCH

In practice, the preceeding ideas must be tempered by the fact that the number of systems we are
interested in far exceeds both available laboratory equilibrium data and current thermodynamic model-
ing techniques. Current emphasis of the latter is on computing what we have called f-equilibria metric
attributes. As a supplement to modeling these numeric attributes, we have presented a method of
representing the qualitative topological relationships, and have suggested the possibility for qualitative
modeling of f-equslibria.

"These must be interpreted as a8 volume {L +a+p}, and two faces, {L +a+8,L.+a)} and
{L +a+pB,L +B}. See end of Section 5 for an explanation.
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The incidence calculus provides a method for characterizing individual phase diagram topology. In
itself however, it does not provide a method for characterizing the topology for the entire class of, say
binary, phase diagrams. This is done, for example, in [18], where the quantitative modeling of what we
have called the metric attributes is worked out as a8 mathematical topology. In the previous section we
have suggested the possibility of algorithmically finding the minimally induced calculus given all subsys-
tem calculi through the application of qualitative thermodynamic rules. These rules, however, must be
represented in a manner amenable to computer manipulation. Thermodynamic modeling seems a for-
midable problem without some method for taking advantage of the qualitative principles given in, for
example[13,15], and translated into transformations on incidence calculi or some similiar purely qualita-
tive medium. To this end, we outline one technique future research might take. We express these ideas
in terms of the goal of a characterization of binary phase diagrams.

As with the incidence lattice, we treat the topological elements and their incidences. A (binary)
phase diagram is then a graph consisting of nodes and connecting edges. This subset of topological infor-
mation we call the phase graph and as a graph its dual[19] is well defined, somthing we call the phase
adjacency graph. As noted in a previous section, the incidence calculus for this dual is a by-product of
computing the diagram incidence calculus. Alternatively, the phase adjacency graph may be created
directly by assigning a labeled node to each phase field of the diagram, and then connecting those nodes
by directed edges whose corresponding phase fields are contiguous in the phase diagram. This represen-
tation of phase diagram topology was explored by the Soviet Academician N.S. Kurnakov sometime
prior to 1961. His ideas were utilized for computer entry of binary diagrams as described in (20}, where
the dual is called a physico-chemical graph. In [15], they are called topological schemes and are sys-
tematically explored using combinatorial enumerations of phases and the contact rule. Other applica-
tions of the phase (adjacency) graph include that of providing s means for efficiently searching across a
collection of systems for an occurrence of a f-equslibrium in which only the phases and their adjacencies
are relevant, i.e., a series of sub-graph matches.

We take the view that the three fundamental thermodynamic events represented in phase
diagrams as a decreasing function of temperature are the appearance or disappearance of a phase, and
the reordering of existing phases, called a formation equilibria, decomposition equilibria and transition
equilibria respectively in [21]. In the binary case the formation and decomposition equilibria correspond
to the peritectic and eutectic invariant equilibria reactions respectively. A (binary) phase diagram
"composed” of several such invariant equilibria, or "reactions”, say formation and decomposition equili-
bria for example, will contain three reaction "interaction” types: peritectic-peritectic, eutectic-eutectic
and peritectic-eutectic. Each such interaction may have several "solutions”, i.e., side by side, one above
the other, etc. We define the jnvariant equilibria co-articujation problem as that of determining the rules
concerned with how two invariant equilibria, each expressed as a schematic in the form of an jpvariant
equilibria adjacency graph , link up. Knowing these rules would make possible the algorithmic comple-
tion of the topology of an hypothesized phase diagram from a set of hypothesized invariant equilibria.
Gibbs phase rule, the boundary rule, the contact rule and other qualitative thermodynamic constraints
clearly limit the possible phase orderings, and this, coupled with the algorithm described in this paper,
would allow the calculation of the remaining intermediate dimensioned equilibria. We are suggesting
that such rules, explicitly stored in the computer as graph/incidence calculus transformation rules and
used in conjunction with thermodynamic modeling, would provide s more complete representation of
thermodynamic knowledge then is currently being used in modeling efforts.

A potentially useful technique for dealing with thermodynamic rules concerned with transforma-
tions on phase adjacency graphs is that of treating these rules as a generative grammar{22,23,24]. A
large literature exists explicitly dealing with grammars defined on graphs (See [25], for example.), as well
as computer algorithms for dealing with them.

One of the underlying assumptions of such a generative grammar approach is that we are
interested in characterizing the topology of an infinite class of potential phase diagrams, only a finite
subset of which have actually occurred in nature. This is analogous to what a grammarian does when he
attempts to characterize English by a grammar: He hypothesizes an infinite set of potential utterances
to characterize, and not just the finite set of utterances that have actually occurred. Such a characteri-
zation may be approached simultaneously from two directions: From below with a too restrictive gram-
mar, and from above with a grammar not restrictive enough. Higher order systems would require a more
generalized graph grammar formalism, based on for example, hypergraphs|26).
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9. SUMMARY

We have informally presented the idea of representing the topological decomposition of a phase
diagram as a lattice in such a way as to make questions of a topological nature answerable via set
theoretic operations in a calculus modeling that lattice. Its potential advantages are:

(1) Entering for each invariant point, the phases which are incident on that point, or equivalently, for
each phase field, the invariant points in which that phase field participates, provides a single
unified method for entering and representing phase diagram topology with an arbitrary number of
components. .

(2) A majority of the topological elements making up a phase diagram, along with their incidences,
may be calculated via the algorithm we have presented. The Schlaefli identity, applied to the
totality of these elements, provides 8 method for insuring that a given set of v;”s describe a topo-
logically consistent diagram.

(3) For a n-ary system, the n (n-1)-ary subsystems contain most of the vertices. Hence knowing the
calculus for these n subsystems provides most of the information for the v;”s needed for the n-ary
system, thus providing a "bootstrapping procedure”. We have also suggested the possibility of
developing a formal model of this process amensable to computer implementation.

(4) The subsystem incidence calculus provides a natural architecture around which to design s mul-
ticomponent data base in which the lower order systems provide a single consistent source of data
for the higher order systems.

Motivated by design considerations for a computerized phase diagram data base, a description of
the inter-diagram relations existing between phase diagrams was given in terms which relate them in a
natural way to the intra-diagram equilibria topological relationships.

As an adjunct to quantitative thermodynamic modeling, we have speculated that discrete qualita-
tive topological models, based on incidence calculus transformations and driven by generative graph
grammar models, might provide new research techniques.
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